An enthalpy method for moving boundary problems on the earth’s surface
نویسندگان
چکیده
Purpose – To present a novel moving boundary problem related to the shoreline movement in a sedimentary basin and demonstrate that numerical techniques from heat transfer, in particular enthalpy methods, can be adapted to solve this problem. Design/methodology/approach – The problem of interest involves tracking the movement (on a geological time scale) of the shoreline of a sedimentary ocean basin in response to sediment input, sediment transport (via diffusion), variable ocean base topography, and changing sea level. An analysis of this problem shows that it is a generalized Stefan melting problem; the distinctive feature, a latent heat term that can be a function of both space and time. In this light, the approach used in this work is to explore how previous analytical solutions and numerical tools developed for the classical Stefan melting problem (in particular fixed grid enthalpy methods) can be adapted to resolve the shoreline moving boundary problem. Findings – For a particular one-dimensional case, it is shown that the shoreline problem admits a similarity solution, similar to the well-known Neumann solution of the Stefan problem. Through the definition of a compound variable (the sum of the fluvial sediment and ocean depths) a single domain-governing equation, mimicking the enthalpy formulation of a one-phase melting problem, is derived. This formulation is immediately suitable for numerical solution via an explicit time integration fixed grid enthalpy solution. This solution is verified by comparing with the analytical solution and a limiting geometric solution. Predictions for the shoreline movement in a constant depth ocean are compared with shoreline predictions from an ocean undergoing tectonic subsidence. Research limitations/implications – The immediate limitation in the work presented here is that “off-shore” sediment transport is handled in by a “first order” approach. More sophisticated models that take a better accounting of “off shore” transport (e.g. erosion by wave motion) need to be developed. Practical implications – There is a range of rich problems involving the evolution of the earth’s surface. Many of the key transport processes are closely related to heat and mass transport. This paper The current issue and full text archive of this journal is available at www.emeraldinsight.com/0961-5539.htm This work is supported by the National Center for Earth-surface Dynamics (NCED), a Science and Technology Center funded by the Office of Integrative Activities of the National Science Foundation (under Agreement Number EAR0120914). An enthalpy method
منابع مشابه
Development of a Moving Finite Element-Based Inverse Heat Conduction Method for Determination of Moving Surface Temperature
A moving finite element-based inverse method for determining the temperature on a moving surface is developed. The moving mesh is generated employing the transfinite mapping technique. The proposed algorithms are used in the estimation of surface temperature on a moving boundary with high velocity in the burning process of a homogenous low thermal diffusivity solid fuel. The measurements obtain...
متن کاملEffects of Slip Condition on the Characteristic of Flow in Ice Melting Process
In this paper a laminar flow of water on an ice layer subjected to a slip condition is considered numerically. The paper describes a parametric mathematical model to simulate the coupled heat and mass transfer events occurring in moving boundary problems associated with a quasi steady state steady flow process. The discretization technique of the elliptic governing differential equations of mas...
متن کاملBoundary layer flow beneath a uniform free stream permeable continuous moving surface in a nanofluid
The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow andheat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermalsurface moving continuously. The resulting system of non-linear ordinary differential equations issolved numerically using the fifth–order Runge–Kutta method with shooting techniques usingMatlab and Maple s...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کامل